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Announcements

= Current readings
—d = Require login

= Assignments
—= = W4 due Thursday

— = Midterm
~>=  3/18, 6-9pm, 0010 Evans --- no lecture on 3/18
—==  We will be posting practice midterms
= One page note sheet, non-programmable calculators
= Topics go through Thursday, not next Tuesday

Outline

= Thus far: Probability

= Today: Bayes nets
7 = Semantics
= (Conditional) Independence

Probability recap

= Conditional probability P(zly) = P}ga(:;ll)’) P
= Product rule P(z,y) = P(z|y)P(y) a—
,,,vayh"h/

= Chainrule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3|X1,X2)...

= X, Y independent iff:  Va,y: P(z,y) = P(z)P(y) &
(&) Q(l\\])m ) © (’(all\‘:%ﬂ

= Xand Y are conditionally independenigt iff:
o Vw,y,z:P(z,y@:P( 2) P(y 2 X_]J_@ 4

Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:
= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

. es’ > a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities) Jineded L nldy

= More properly called graphical models <@ < T"

We describe how variables locally interact ¢

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we'll be vague about how these interactions
are specified

Graphical Model Notation

= Nodes: variables (with domains) /
= Can be assigned (observed) or

unassigned (unobserved)

= Arcs: interactions
= Similar to CSP constraints '

= Indicate “direct influence” between
variables

= Formally: encode conditional
Toothache @

independence (more later)

= For now: imagine that arrows
mean direct causation (in
general, they don’t!)




Example: Coin Flips

= N independent coin flips

- ® ® - ©

= No interactions between variables:
absolute independence

Example: Traffic

= Variables:
= R:ltrains
= T: There is traffic

= Model 1: independence @

= Model 2: rain causes traffic /

= Why is an agent using model 2 better?

Example: Traffic Il

= Let’s build a causal graphical model

= Variables
= T: Traffic

= R:ltrains @

= L: Low pressure

= D: Roof drips @
= B: Ballgame

= C: Cavity

Example: Alarm Network

= Variables
= B: Burglary
= A: Alarm goes off G 3
= M: Mary calls
= J: John calls
= E: Earthquake!

Bayes’ Net Semantics

= Let’s formalize the semantics of a
Bayes’ net
—s>» A set of nodes, one per variable X
—a A directed, acyclic graph

—® A conditional distribution for each node
= A collection of distributions over X, one for
each combination of parents’ values
P(X|ay...an)

* GET: conditional probability table
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o

P(X|A; ... An)

A

Cum
= Description of a noisy “causal” process i k'u:i .\& & \C;s \,y..B

ABa = Topology (graph) + Laeal Conditional Probabilitig

O—G—>0—0—0
Probabilities in BNs

@
= Bayes’ nets implicitly encode joint distributw

= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment, multiply

all the relevant conditionals together: &«
n
—  P(z1,22,...2n) = [] P(zi|parents(X;)) o«
- - - i=1 ~
= Example: P PR 1S T P A ?(l;l'l,r...uli-\)

&9}

P(+cavity, —/—cath,‘:toothache ™
= X = [AURBSH U7
(‘F{'KM/ p/q‘/lh( Loa b QTndop. \AM
L]) «P( ,_,A,_ O M = =0\ fueixa)
= Thistets Us recons

Pk D
ruct any entry of thé‘mﬂﬁﬂ'\r
= Not every BN can represent every joint distribution
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= The topology enforces certain conditional independencies




Example: Coin Flips

P(X1) P(X>2) P(Xn)
h |05 h |05 . h |05
T |05 T |05 T |05

P(h,h,t,h) = Pl =) P =h) - (AN ‘NY‘\'—«)

— \ \ Y A

D S - L <
Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs. 15

Example: Traffic

CPT P(R)
4| 1/4 % P(+r,—t) = f("”‘\
-1 = «Plaklen)
CPT P(TIR) Co
— *
+=>| o+t 3/4 = T
© -
=t 1/4
—r—| 4+t 1/2 - Tlé-
-t 1/2

P, e, T4 ;,5 )
Example: Alarm Network

B E A P(ABE)
+b [+e [+a [0.95
+b |+e |—a |0.05
+b |—e |+a [0.94

A J P(JIA) A M P(M|A) +b |—e |—a [0.06
+a |+ (0.9 +a |+m |0.7

—-b |+e |+a |0.29
+a |—=j [0.1 +a |—-m |0.3 —-b |+e |—a |0.71
—a |+ [0.05 —a |+m |0.01 —-b |—e |+a 1
—a |- [0.95 ([=a [-m |0.99 —b |-e |-a 0999 |

Size of a Bayes’ Net

= How big is a joint distribution over N Boolean variables?

2N { 0
R\l 2\” = W’;

= How big is an N-node net if nodes have up to k parents?

O(N * 2k+1@\* Lm\ (b)) Q.

= Both give youThe power to calculate P(X1, Xa,... Xn)
= BNs: Huge space savings!

= Also easier to elicit local CPTs «@—

= Also turns out to be faster to answer queries (coming)@—
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Bayes’ Nets

= So far: how a Bayes’ net encodes a joint distribution <~

= Next: how to answer queries about that distribution 4.
= Key idea: conditional independence

= After that: how to answer numerical queries (inference) e~
more efficiently than by first constructing the joint
distribution

Conditional Independence

= Reminder: independence
= X'and Y are independent if

Vz,y P(z,y) = P(x)P(y) ---=> XY
= X andY are conditionally independent given Z
Vz,y,z P(z,y|z) = w- -+ X1Y|Z
= (Conditional) independence is a property of a N
distribution
S |~ =@ \?mLx;l)
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Example: Independence

= For this graph, you can fiddle with 8 (the CPTs) all you
want, but you won't be able to represent any distribution
in which the flips are dependent!

@ ®

P(X1) P(X>)

h 0.5 h 0.5
t 0.5 t 0.5

All distributions
24

X11X,

Topology Limits Distributions

= Given some graph
topology G, only certain
joint distributions can
be encoded

= The graph structure
guarantees certain

(conditional) ?(7'\ 1
independences \“‘\

= (There might be more QU'
independence)

= Adding arcs increases
the set of distributions,
but has several costs

= Full conditioning can
encode any distribution

) PlY) flley
N

po assumphing
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Independence in a BN

= Important question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
= If no, can prove with a counter example Q(‘lw“\

= Example: ?bq i
| ®—O—-® -

= Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which
causes traffic.

= X can influence Z, Z can influence X (via'Y)
= Addendum: they could be independent: how?

Causal Chains

= This configuration is a ‘‘causal chain”
X: Low pressure

Y: Rain
Z: Traffic

P(z,y,2) = P(z)P(y|lz) P(ly)

= Is X independent of Z given Y?

@@%@\Zv]\”@y . kg PRUBD Y1)
e (xly2) PE—? B (xly) P @P)

) Yes!
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?lvgb\\c.v
Common Causeg =" K*"’%

¢
= Another basic configuration: two \'
effects of the same cause a
= Are X and Z independent? HO

= Are X anég? nidependent iven Y7q-\-/
P(zlz,y) = P(z,y,2) b{ﬂ)\Y Project due
» P(z,y) /ﬁiﬁ / X: Newsgroup
) P(llxd-\ -7 busy
. ()(ﬁ\/l 2 l ,— &5 % . M\/) ‘)(Zl\o Z: Lab full
- o0 4

= Observing the cause blocks
influence between effects.
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Comst e OO0 ,  Ommo~Cause c&

"~ Common Effect®°
= Last configuration: two causes of \o\;?

)
one effect (v-structures) [@Cxa) 2PCE2
= Are X and Z independent? ®Ceta1 4Py

el 2 (1¢3]
= Yes: the ballgame and the r. cause “traffic,
but they are not correlated

= Still need to prove they must be (try it!) ‘AO‘U{"
= Are X and Z independent given Y? X: Raining
= No: seeing traffic puts the rain and the ’
ballgame in competition as explanation? Z: Ballgame
= This is backwards from the other cases V: Traffic

= Observing an effect activates influence
between possible causes.
29




The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph
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